What about that Apollo 16 subsatellite?
In this blog I have shown that two Apollo spacecraft were left in orbits that are stable over decades. That’s really surprising and unexpected. Some people have asked if I can simulate an object that is known to have decayed out of orbit, as a reality check, to show that these simulations aren’t out of whack. That’s what we’ll do in this post.
One very notable case is the Apollo 16 Particles and Fields Subsatellite, otherwise known as PFS-2, which decayed out of lunar orbit in 1972 after only 5 weeks in orbit. Weighing just 36 kg, it was jettisoned from the Apollo 16 Service Module not long before the crew left lunar orbit to return to Earth. Originally it was planned to raise the orbit of Apollo 16, so that PFS-2 would remain in orbit for a year. Due to problems during the mission, that orbit change was skipped, and the expected orbital lifetime of PFS-2 was cut down to a few months. PFS-2 was equipped with a transmitter so that it could be tracked, and its data could be sent back to Earth. Only 34 days after it was jettisoned, the transmissions ceased, and PFS-2 impacted the Moon.
Let’s run a simulation of PFS-2 and see what happens. As with previous simulations we can get the initial conditions from the Mission Report. The Figure 1 shows the data from the report. I believe the report is showing the state of the Command-Service Module (CSM) rather than the PFS-2, but it should be close enough to see if we are in the right ballpark. After converting the parameters to metric and getting them into the right coordinate frame, I get a GMAT script like this one, posted on GitHub.
Figure 1: Showing the initial conditions of PFS-2 from the Mission Report. |
For starters, we’ll just record the low point in each revolution, as we have done previously. Figure 2 shows how it looks over time. We see the minimum altitude dropping for several weeks, and then there is a reversal and it starts to rise up again around the middle of May. About a week later the orbit starts to become more eccentric, and the perilune altitude begins dropping again. Sure enough, just 5 weeks after jettison, at the end of May 1972, the low point of the orbit is below the average radius of the Moon...zero altitude...and that is a sure sign that impact has occurred. (The simulator doesn’t check for impact while it is running…it will happily simulate an object that is actually beneath the surface, so we’ll have to look in greater detail to see exactly when and where the impact occurs. I’ll explain how to do that in a future blog post.)
Figure 2: Simulated perilune altitude. |
Figure 3: Impact times and locations reported by NASA and estimated by simulation |
No comments:
Post a Comment
All comments are moderated. Please keep it respectful, non-commercial, and relevant to the topic of the blog. Thanks! Roger.