Showing posts with label Radar. Show all posts
Showing posts with label Radar. Show all posts

Saturday, January 25, 2020

How could Snoopy be found?

If you've read my earlier posts you have seen how simulations of the Apollo 10 Lunar Module descent stage...aka "Snoopy"...show that the stage might still be in lunar orbit today, despite widespread expectations to the contrary.

If, indeed, by some miracle the stage orbit never did decay, and is still in orbit, how might we locate it? Experts have told me that optical methods won't work. However, there is another method that has been proven to work, and was used to locate a "lost" Indian lunar satellite in 2017. This method uses radar. Specifically, a dish in Goldstone is used as a transmitter, and another dish in Green Bank is used as a receiver.

In 2017, they knew that the lost satellite was in a polar orbit, so they could aim the radar just off of the moon's pole and wait for it to appear. Objects orbiting the moon come around about every two hours, so even if they were unlucky and the thing had just passed by when they turned on the machine, they would have to watch for two hours at the most.

How about Snoopy? If you read my earlier post about the stage orbit, you know that the stage is in a low inclination orbit...i.e. it follows the lunar equator. So to look for the stage they would aim the beam just above the rim of the moon, right at the lunar equator. And wait. And hope. For two hours at most? Not quite.

The same face of the moon is always facing the Earth. (Mostly.) Using the simulator, we can record the latitude and altitude of the stage as it crosses 90 degrees East longitude, that is, as it comes around from the back side of the moon. Here is a plot showing how that might have looked over 6 months of 2018. I have also drawn in a circle representing the size of the radar beam at lunar distance, which I was told is about 200 km wide.


Each orange dot represents one crossing of the stage above the lunar horizon, so there are two hours between each dot. Some days the stage is coming "over the hill" at a low altitude, below 100 km, and then other days it is coming over at a higher altitude. At this point, after 50 years, although the simulations give an idea that the stage is still in orbit, there is too much uncertainty to know exactly where it might be in its orbit, so you can take the above plot as a kind of "probability map" of how high the stage might be as it comes around on any given orbit. But the key takeaway here is that with a single two-hour radar observation, the stage might pass under the beam.

Aha, I have a brilliant idea! Aim the beam closer to the moon! Unfortunately, an expert told me that they need to aim the beam "several hundred kilometers" away from the surface, so that the receiver doesn't get overwhelmed with reflections of the moon itself. So how long would they need to observe with the radar to either find the stage or conclusively prove it was not there? To answer this question, you need to look at how the altitude at the limb changes with time.


As the moon rotates once each month, always keeping one face towards the Earth, it also rotates under the eccentricity of the stage orbit. So the altitude of the stage as it comes into view slowly varies, over the course of a month, from the lowest part of the orbit to the highest, and back again. So if the first attempted radar observation happened to be on a "low horizon-crossing altitude" day, and found nothing, they could wait half a month and try again. And oh, by the way, when the orbit is crossing the eastern limb of the moon at low altitude, it is crossing the western limb at high altitude, so another strategy would be to observe each equatorial horizon of the moon for two hours on a single night.

Wouldn't it be awesome to locate this amazing artifact after 50 years? Please tweet a link to this post to @NASAJPL if you agree.




Monday, January 20, 2020

Introduction

The descent stage of the Apollo 10 Lunar Module ("Snoopy") may still be in lunar orbit today. This defies conventional wisdom. It goes against all expectation about how things behave in lunar orbit. It is the last thing I expected to find when I set out to look for an impact crater that I assumed would be the final resting place of the stage. Nonetheless, this is what simulations of the stage orbit show. In this blog I will show how I arrived at this surprising conclusion.

This picture of the descent stage ladder and footpad comes from the 16mm "DAC" film taken on May 22, 1969, during the dramatic moments when the stage was jettisoned. 

Snoopy's tail was jettisoned into lunar orbit on May 22, 1969, during a daring mission that paved the way for the first moon landing less than two months later. Apollo 10 was the first mission to take a Lunar Module to the moon; the first test of all the hardware and procedures. All except landing. It was the first demonstration of Lunar Orbit Rendezvous, the risky, radical, "sine qua non" of Apollo. 

When I started looking for the stage, I was expecting a quick orbital decay. Everything I read said that's what happened. I thought this would mean less uncertainty about the impact point...a smaller search area. So I was disappointed when I started running simulations, showing that the stage stayed in orbit for months. That was not helpful for finding a crater. My remaining hope was that some high piece of lunar terrain might have snatched the stage if it slowly drifted down to lower and lower altitudes. Perhaps I could focus the search on lunar mountaintops. So I kept looking.

The stage orbit was unusual, in terms of Apollo orbits. In order to demonstrate undocking, firing the LM descent engine to approach the moon, and then firing the ascent engine for the rendezvous, NASA had a problem. Without any landing, they needed a way to arrange for the right timing of the maneuvers. The descent would put the LM in a lower orbit, moving it ahead of the Command Service Module. (The "CSM".) Demonstrating the ascent and rendezvous required that the CSM be leading the LM. The solution was the "Phasing" maneuver. This special burn, never performed by any other Apollo mission, would raise the high side of the LM orbit to 190 nautical miles above the far side of the moon, slowing down the LM's orbital period enough to allow the CSM to overtake it.

This plot of the LM position relative to the Command Module, from mission planning documents, shows how the "Phasing" burn pushed the LM into a higher orbit, so that it would drop behind the CM, giving the right alignment for rendezvous.

While the LM was in the Phasing orbit, 12 n.m. at its low point, and 190 at the high point, the descent stage was jettisoned, with an initial velocity relative to the ascent stage of around 2 feet per second. (Both parts were zipping along at a mile a second at this point.) The goal was to kick the stage forward, but unexpected problems with the attitude controls during staging altered this, and the stage was pushed "upward" relative to the local horizontal at the time of staging. (Notice that the moon is "upside down" in the picture above taken during staging...it wasn't supposed to be this way.) Regardless of the extra drama, ten minutes later, the stage was at a safe distance, and the crew fired the ascent engine, slowing their velocity and lowering the high side of their orbit, putting them on track for a successful rendezvous and docking. The stage was left behind in the phasing orbit. It was assumed that this orbit would quickly decay, impacting the moon within days or weeks.

As I starting running simulations of the stage orbit, the hope for a quick demise did not pan out. I ran the simulations out longer and longer, out 10 years, and still the stage kept going. Finally I decided to run the simulation out to the present. This took about 40 hours on my laptop. At the end, the stage remained in orbit all the way to the present, with no sign of decay or orbital instability. As I build out this blog I will share more details, and show you how to try it to see for yourself.